2798

PROTON ACCEPTOR ABILITY OF HALIDES OF THE GROUP IV A ELEMENTS*

M.JAKOUBKOVÁ, Z.PAPOUŠKOVÁ, J.POLA and V.CHVALOVSKÝ

Institute of Chemical Process Fundamentals, Czechoslovak Academy of Sciences, 165 02 Prague 6 - Suchdol 2

Received December 30th, 1976

Proton acceptor ability of chlorine in the $R_3MCl(A)$, $R_2MCl_2(B)$, and $R_3MCH_2Cl(C)$ compounds with R = alkyl, and M = C, Si, Ge, and Sn was measured by hydrogen bond IR spectra. This property is shown to be in agreement with the M—Cl bond heterogeneity in the series A and B, in corresponding organosilicon compounds is strongly influenced by back bonding.

Molecular features mainly affecting physico-chemical properties of the organic compounds of the group IVa elements¹⁻³ have long been under dispute. A molecular structure of the halides R_3MX (M is the group IVa element) appears to be mainly governed by the atom M electronegativities, the variation in the electrondonating substituents R is being expected not to have noticeable influence on the differences in physico-chemical properties of these compounds. The findings of Bellama and coworkers⁴ that electric dipole moment of monohalogen derivatives of germane and silane follow dissimilar trend together with our preliminary results on physical properties of the (CH₃)₃MX compounds⁵ led us to spread our earlier interest in the proton acceptor ability of halogen in organosilicon compounds⁶ to that in organometallic halides of germanium and tin. Within framework of our study of the α -carbofunctional compounds of silicon⁷ the examination of the relative proton acceptor ability of (CH₃)₃MCH₂Cl compounds is presented as well.

EXPERIMENTAL

Trimethylchlorogermane was prepared by protodegermylation of phenyltrimethylgermane. Dry hydrogen chloride was bubbled through the solution of phenyltrimethylgermane (20 g, 0·10 mol) in absolute di-n-butyl ether (100 ml) and the reaction course was continuously checked by GC analysis. Trimethylchlorogermane was obtained by rectification (b.p. $99-100^{\circ}$ C, 12·5 g, 82% yield). 2,2-Dimethylpropyl chloride was prepared by the treatment of 2,2-dimethylpropan-1-ol with thionyl chloride in the presence of stoichiometric amount of pyridine in di-n-butyl ether and obtained from the distillation fraction boiling at 85°C by preparative gas chromatography.

^{*} Part XXIV in the series Organogermanium Compounds; Part XXIII: This Journal 41, 581 (1976).

Trimethylchlorostannane was supplied by Merck-Schuchardt, di-n-butylchlorostannane by Lachema, Brno; dimethyldichlorogermane⁸, trimethylchloromethylgermane⁸, and 2,2-dichloropropane⁸ were prepared and characterized earlier, and trimethylchloromethylstannane was from the laboratory stock.

Proton acceptor ability, $\Delta \nu$ (OH), was determined from the IR spectra of hydrogen bonds as reported before⁶.

RESULTS AND DISCUSSION

TABLE I

Similarly to chlorine bonded to an organic skeleton⁹ also chlorine bonded to the group IVa element M interacts in CCl₄ solution with the acidic hydrogen of phenol and forms intermolecular hydrogen bond. Proton acceptor ability of chlorine in R₁MCl, R₂MCl₂, and R₃MCH₂Cl compounds could thus be ascertained by this way and its relative values for aforementioned compounds with M is C, Si, Ge, and Sn are seen from Table I. Proton acceptor ability of chlorine in the R₃MCl compounds is always somewhat higher when compared to that of corresponding R_2MCl_2 compound, what might be expected due to the mutual polar effect of chlorine atoms in the latter compounds. Increasing ability of chlorine to interact with positively charged hydrogen of phenol when going from silicon via carbon and germanium to tin does not correspond either to the electronegativities of the M elements¹⁰, or to the R₃M group electronegativities¹¹. The very characteristic¹² M—H stretching vibration in the X₃M-H compounds was shown¹³ to be sensitive measure of the electronic effect of the X₃M-groups and it would be therefore reasonable to find out whether relative proton acceptor ability of chlorine in R₃MCl compounds is in harmony with polar effect of the R₃M-group appraised from the force constant of the

Relative Proton Acceptor Ability, Δv^a in c. CH_2Cl Compounds	m^{-1} , of the (CH ₃) ₃ MCl, (CH ₃) ₂ MCl ₂ , and (CH ₃) ₃ .
Compound	M

	M			M	
Compound	С	Si	Ge	Sn	
(CH ₃) ₃ MCl (CH ₃) ₂ MCl ₂		52 ^b 26 ^{b,c}	90 32	113 62 ^d	
(CH ₃) ₃ MCH ₂ Cl	63 ^e	62 ^b	64	67	

^{*a*} $\Delta \nu$ denotes the difference between ν (OH)_{free} and ν (OH...Cl) for the solution of 0.02m phenol and about 1m proton acceptor (CH₃)₃MCl, (CH₃)₂MCl₂, or (CH₃)₃MCH₂Cl in CCl₄. Experimental error was ± 3 cm⁻¹; ^{*b*} Ref.⁶; ^{*c*} Shoulder; ^{*d*} (n-C₄H₉)₂SnCl₂; ^{*e*} The value has to be taken with reservation because of an impurity in this compound. M—H bond of aforementioned X_3MH hydrides. As it turns out from the Fig. 1, the plot of $\Delta v(OH)$ versus Taft polar constant of R_3M group $\sigma_{R_3M}^*$ (ref.¹³) is linear for R_3MCI compounds except for silylchloride. The stretching M—H frequency in $(CH_3)_3MH$ compounds is linearly raised following the order of the decreasing electronegativity difference between the M and H elements¹⁴. No satisfactory linear relationship however holds for coupling constants between directly bonded protons and ¹³C nucleus and the group electronegativities covering the R_3M groups with the first, second, third, and the forth row's central atom in R_3MX (X = halogen) compounds in common, but only separate linear relationships within individual rows could be obtained¹⁵.

If we assume only very slight difference both in electronegativities of the Si, Ge, and Sn atoms^{10,16}, and that in Taft polar constants for $R_3M_{\cdot}(M = Si, Ge, Sn)$ groups¹³, we may suppose the M—X bond character to be mainly responsible for the observed trend of proton acceptor ability of R_3MCl compounds (and R_2MCl_2 compounds as well). The decrease in covalent bond strength of M—Cl bonds with an increasing atomic number of atom M was claimed by Drago¹⁶, and from our data an additional support to this statement can be gained. The increase of the proton acceptor ability of chlorine in the R_3MCl (and also R_2MX_2) compounds following the order C, Ge, Sn is thus compatible with the increase of the heterogenecity of the M—Cl bond, the phenomenon having been discussed earlier¹⁶. The low $\Delta\nu$ (OH) values for (CH₃)₃SiCl and (CH₃)₂SiCl₂ compounds are caused by back bonding^{1,17}, the situation observed^{18,19} also for oxygen containing R_3MOR' compounds (R' is alkyl). As to the R_3MCH_2Cl compounds, their relative proton acceptor ability is comparable, and the differences are within experimental error. Any conclusion concerning the relative role of the α -effect^{20,21} in these compounds is thus precluded.

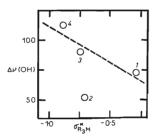


FIG. 1

Plot of $\Delta v(OH)$ of Phenol Due to Its Interaction with Chlorine of the R₃MCl Compounds versus Taft Polar Constant of R₃M Group

The points 1-4 refer to M = C, Si, Ge, Sn respectively.

REFERENCES

- Bažant V., Chvalovský V., Rathouský J.: Organosilicon Compounds. Publication of the Institute of Chemical Process Fundamentals, Czech. Acad. Sci., Prague 1973.
- 2. Glockling F.: The Chemistry of Germanium. Acad. Press, London 1969.
- Ebsworth E. A. V. in the book: Organometallic Compounds of the Group IV Elements, (A. G. MacDiarmid, Ed). Vol. 1, M. Dekker, New York 1968.
- 4. Bellama J. M., Wandiga S. O., Maryott A. A.: Inorg. Nucl. Chem. Lett. 7, 71 (1971).
- 5. Pola J., Chvalovský V.: This Journal, in press.
- 6. Jakoubková M., Papoušková Z., Chvalovský V.: This Journal 41, 2701 (1976).
- Chvalovský V.: Plenary Lecture at the III. International Symposium on Organosilicon Chemistry, Madison, USA 1972.
- Chvalovský V., Svoboda P., Cadenas J., Vaisarová V., Papoušková Z., Jakoubková M.: This Journal, in press.
- 9. Schleyer P. R., West R.: J. Amer. Chem. Soc. 81, 3164 (1959).
- 10. Huggins M. L.: J. Amer. Chem. Soc. 75, 4123 (1953).
- 11. Huheey J. E.: J. Phys. Chem. 69, 3284 (1965).
- 12. Kovalev I. F.: Dokl. Akad. Nauk SSSR 134, 559 (1960).
- 13. Egorov Yu. P., Morozov V. P., Kovalenko N. F.: Ukr. Khim. Zh. 31, 123 (1965).
- 14. Mathis R., Satge J., Mathis F.: Spectrochim. Acta 18, 1463 (1962).
- 15. Wels R. R.: Progr. Phys. Chem. 6, 111 (1968).
- 16. Drago R. S.: J. Inorg. Nucl. Chem. 15, 237 (1960).
- 17. Pitt C. G.: J. Organometal. Chem. 61, 49 (1973).
- 18. Ulbricht K., Jakoubková M., Chvalovský V.: This Journal 33, 1693 (1968).
- Marchand A., Mendelsohn J., Lebedeff M., Valade J.: J. Organometal. Chem. 17, 379 (1969).
- Voronkov M. G., Feshin V. P., Mironov V. F., Mikhailants S. A., Gar T. K.: Zh. Obshch. Khim. 41, 2211 (1971).
- Voronkov M. G., Feshin V. P., Romanenko L. S., Pola J., Chvalovský V.: This Journal 41, 2718 (1976).

Translated by the author (J. P.).